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Abstract 
The article discusses the problem of visualizing the results of computational fluid 

dynamics simulations on cell-centered adaptive mixed meshes. An algorithm for converting 
hierarchical adaptive mixed meshes consisting of tetrahedra, triangular prisms, quadrangular 
pyramids, and hexahedra to a conformal form is described. The main idea of the proposed 
algorithm is to decompose a subset of mesh cells with hanging nodes on the edges into 
tetrahedra and pyramids with the addition of new vertices at the polyhedra mass centers. The 
mesh functions interpolation algorithm is based on the discrete analogue of the formula for 
the integral representation of the gradient. Application of the algorithm allows to show the 
fields of mesh functions using software for data visualization on irregular grids. On the 
example of a stationary supersonic flow visualization at the sphere surface using the Tecplot 
tools, the advantages and disadvantages of various data presentation options are 
demonstrated. These include displaying results on a hanging node mesh without changing the 
topology, transferring data to a starting conformal mesh, polyhedra data visualization, and 
converting an adaptive mesh to conformal form with cell decomposition and data 
interpolation.  
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1. Introduction 
In modern computational fluid dynamics, methods of static and dynamic adaptation of 

meshes are used to improve the solution accuracy and reduce the computation time. The 
adaptive mesh is refined during the simulation, taking into account the features of the flow 
structure. For example, the adaptive mesh is refined near the shock wave. The first papers 
describing the technology and the results of calculations on adaptive meshes were presented 
more than a quarter of a century ago [1, 2]. Nevertheless, the problems of developing new 
methods, optimization and application of known refinement techniques are of interest at the 
present time [3, 4]. 

In terms of frequency of references in the literature, the main approaches are based on 
hierarchical decomposition and coarsening of elements. The most common example of 
meshes of this type is octree grids, which are used both directly in calculations [5] and for 
solving other applied problems [6]. The practical advantage of using hierarchical meshes in 
CFD is the logical simplicity of the implementation of dynamic adaptation procedures for 
simulating unsteady flows. For a fixed total number of cells, the fine mesh zone moves 
arbitrarily within the computational domain. The hierarchical topology does not formally 
have restrictions on the difference between the sizes of neighboring leaf elements. However, 
in mathematical physics calculations, the difference in the refinement levels of neighboring 
calculation cells, as a rule, is limited to one. For example, an octree leaf cell always has either 
one or four neighbors on each face. 
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In the case of modeling flows near surfaces of complex shapes, mixed meshes are used for 
spatial discretization of the system of gas-dynamic equations. They consist of so-called basic 
polyhedra (tetrahedron, triangular prism, quadrangular pyramid, hexahedron) and 
polyprisms with polyhedra. Polyprisms and polyhedra are generated by transforming mesh 
blocks of triangular prisms and tetrahedra [7]. 

Mixed meshes data visualization and analysis are supported by most postprocessing and 
scientific visualization software tools. The topology of basic polyhedra is described either 
explicitly with an indication of the cell type (VTK file format [8]), or the hexahedron format 
with degenerate edges and faces is used (Tecplot package [9]). For example, a triangular 
prism is defined as a hexahedron at six mesh nodes with two opposite edges contracted to 
points. The description of the topology of a polyhedron mesh contains ordered lists of flat 
faces nodes and the pairs of indices of cells adjacent along the faces. The visualization 
algorithms work with the mesh functions values specified at the nodes. But the data storage 
formats allow the determination of the flow variable values both at the nodes and at the mesh 
element centers. In the last case, the interpolation of values is performed by visualization 
tools at the stage of reading the input files. 

The adaptation methods for mixed meshes and regular grids are essentially the same. 
Isotropic decomposition of basic polyhedra is performed using fixed decomposition stencils 
(fig. 1). New nodes are placed at the midpoints of the edges, at the quadrangular face centers, 
and at the hexahedron mass centers. After splitting tetrahedra, hexahedrons and prisms, 
eight elements of a same type appear. The quadrangular pyramid is split into four 
tetrahedrons and six pyramids. In the polyhedral zones, at the first adaptation step, the cells 
are divided into basic polyhedra, to which the standard decomposition stencils are 
subsequently applied. The implementation of the latter approach is included in the Ansys 
Fluent software package (PUMA technology [10]). 

 

    
a) hexahedron b) tetrahedron c) prism d) pyramid 

Fig. 1. Mixed mesh cell decomposition types. 
 
Locally cell refinement leads to the appearance of "hanging nodes". Technically, an 

adaptive hanging node mesh topology can be stored in the same format as an unstructured 
conformal mesh topology. But at the same time, the border of adjacent zones of leaf cells at 
different refine levels is displayed as an additional internal border. Fig. 2 shows an example 
of visualization of an adaptive mesh for simulating the flow around a ballistic model 
(hereinafter, the illustrations are obtained using the Tecplot tools). The appearance of the 
inner boundary leads to discontinuities of the level lines and mesh functions isosurfaces. 

 



 
 

 
Fig. 2. Inner border when rendering a adaptive hanging node mesh. 

 
There are two options for solving the problem: the development of special visualization 

algorithms, or the transformation of an adaptive mesh into a conformal mesh consisting of 
arbitrary or base polyhedra, followed by visualization of the results by means of viewing data 
on unstructured meshes. A generalized review of visualization methods and software for 
adaptive meshes is given in [11]. In terms of their functionality, narrowly focused applications 
are expected to lose out to more popular and widespread software packages for conformal 
mesh data visualization. In addition, the geometry representation format used in the 
computational kernel, as a rule, differs from the format supported by the viewer. Thus, to 
display the solution, the storage of special files is necessary. An important question is the 
duration of support and the support terms of specialized software products by the developer. 
Therefore, the variant with the transformation of the adaptive mesh looks more general from 
a practical point of view, although it has similar disadvantages. The implementation of the 
approach is associated with the development of an algorithm for transforming the topology 
and recording individual files to visualize the flow structure. 

One of the well-known methods for transforming an adaptive mesh consisting of basic 
polyhedra is presented in [12]. The cell decomposition type is selected according to the 
number and distribution of hanging nodes on its edges and faces. The approach is focused 
primarily on generating a computational mesh containing elements of a regular geometric 
shape. Therefore, for some configurations of the node location, it is proposed to repeat the 
procedure of refinement of the mesh cells, which leads to the expansion of the adaptation 
zone and multiple values interpolation. The code and software implementation of the 
algorithm are distinguished by complex logic for transforming elements and a large amount 
of computation. 

This paper describes a data visualization-oriented, logically simple algorithm for 
transforming hierarchical adaptive meshes with elements of the tetrahedron, prism, pyramid, 
and hexahedron type to conformal form. On the example of the problem of visualizing the 
structure of a stationary supersonic flow near the surface of a sphere using the Tecplot 
package, the advantages and disadvantages of various data presentation options for viewing 
the results of simulations on adaptive mixed meshes are shown. 

2. Adaptive mesh transformation algorithm 
The algorithm for transforming a hierarchical adaptive mesh to a conformal form is 

applicable for mixed meshes consisting of polyhedra 𝐶𝑖 of four types: tetrahedron, triangular 
prism, quadrangular pyramid, and hexahedron. The values of the mesh functions 𝑓𝑖 are 
determined at the centers of mass of the elements 𝐱𝐢 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖). The mesh topology must 
comply with the limit for a difference of no more than one nesting level between the leaves 
adjacent to the edge. There can be no more than one hanging node on the edge of a leaf cell, 



 
 

and the number of its neighbors on each face is equal to one or four cells. Otherwise, the 
mesh is preliminarily reduced to the specified form. 

Fig. 3a shows an example of an adaptive mesh topology, where two hanging nodes (red 
spheres) are located on a common edge of two cells (cell faces are painted in blue, vertices of 
a common edge are marked with yellow spheres). Here, cells of three levels of the hierarchy 
border along the edge. This is against the restrictions. By analogy with [12], the problem is 
solved by uniformly refining the cells of the upper level. As a result of decomposition, the 
edge is divided into two parts, only one of which has a hanging node (fig. 3b). 

 

  
a) edge with two hanging nodes b) edge with one hanging node 

Fig. 3. Matching mesh topology to constraints. 
 
The essence of the proposed mesh transformation algorithm is a sequential partitioning 

of cells with hanging nodes. Cell decomposition is performed in two steps. The first step is to 
split the hanging node faces. Fixed subdivision types of triangles and quadrangles are shown 
in fig. 4 and fig. 5. The subdivision type is determined by the number of hanging nodes. For 
quadrangles with two hanging nodes, their relative position is additionally taken into 
account: on adjacent (fig. 5b) or opposite (fig. 5c) edges. At the end of the first step, the mesh 
cell becomes a convex polyhedron with the total number of flat faces from 5 to 30. 

 

   
a) one hanging node b) two hanging nodes c) three hanging nodes 

Fig. 4. Subdivision types for triangular faces. 
 
In the second step, the volume of the polyhedron is divided into pyramids. The faces of 

the cells become the bases of the pyramids, and a new mesh node located in the center of 
mass of the polyhedron becomes the common vertex. As a result, the cell of the adaptive mesh 
splits into tetrahedrons and quadrangular pyramids. 

 



 
 

   

a) one hanging node 
b) two nodes on edges with 

a common vertex 
c) two nodes on opposite 

edges 

   
d) three nodes e) four nodes f) five nodes 

Fig. 5. Subdivision types for quadrangular faces. 
 
Fig. 6 shows illustrations of examples of transformation of elements. A tetrahedron with 

five nodes on its edges is divided into ten tetrahedra and two quadrangular pyramids (fig. 6a). 
A hexahedron with two hanging nodes splits into ten tetrahedra and three pyramids (fig. 6b). 

 

  
a) decomposition of tetrahedron b) decomposition of hexahedron 

Fig. 6. Examples of transformation of mesh cells. 
 
The face decomposition types are unambiguous. Regardless of the processing order of 

cells of the same hierarchy level, their common face will be divided into polygons in the same 
way. Special cases of face decomposition coincide with isotropic refinement algorithms 
during mesh adaptation. Decomposition types of faces with the maximum number of hanging 
nodes (fig. 4c and fig. 5f) correspond to the variants of splitting the faces from the side of four 
cells of the next hierarchy level. Thus, upon completion of the decomposition of cells with 
hanging nodes, the hierarchical adaptive mesh will be converted to a conformal form. 

To calculate the values of the variables at the mass centers of the nested cells 𝐶𝑐ℎ, the 
polynomial defined on the parent cell 𝐶𝑝 is used 

𝑓𝑐ℎ = 𝑘𝑝
𝑥(𝑥𝑐ℎ − 𝑥𝑝) + 𝑘𝑝

𝑦
(𝑦𝑐ℎ − 𝑦𝑝) + 𝑘𝑝

𝑧(𝑧𝑐ℎ − 𝑧𝑝) + 𝑓𝑝.  

Linear reconstruction of variables corresponds to the conservative interpolation 
condition 

𝑓𝑝|𝐶𝑝| = ∑𝑓𝑐ℎ|𝐶𝑐ℎ|,  

where |𝐶𝑖| is the volume of the i-th mesh cell. 
The polynomial reconstruction coefficients are calculated on the basis of a discrete 

analogue of the formula for the integral representation of the gradient 

(𝑘𝑖
𝑥 , 𝑘𝑖

𝑦
, 𝑘𝑖

𝑧) =
1

|𝐶𝑖|
∑ 𝑓𝑓𝑎𝑐𝑒𝐒𝐟𝐚𝐜𝐞𝑓𝑎𝑐𝑒𝑠 .  



 
 

Here 𝑓𝑓𝑎𝑐𝑒  denotes the values of the function at the mass centers of flat faces with square 

vectors 𝐒𝐟𝐚𝐜𝐞. 
If the cell 𝐶𝑖 borders on the cell 𝐶𝑗 of the same or the up level of the hierarchy, the value of 

the function in the center of their common face is equal to the arithmetic mean of the values 
of the function in the cell centers 

𝑓𝑓𝑎𝑐𝑒 =
1

2
(𝑓𝑖 + 𝑓𝑗).  

If on the opposite side of the face of cell 𝐶𝑖 there are four cells 𝐶𝑗0, 𝐶𝑗1, 𝐶𝑗2 𝐶𝑗3 of the next 

level of subdivision, the formula is used for averaging 

𝑓𝑓𝑎𝑐𝑒 =
∑ 𝑓𝑖 + 𝑓𝑗𝑚𝑚=0,1,2,3

8
. 

 

The value of the function in the center of the face located on the boundary of the 
computational domain is equal to the value in the cell center. 

The algorithms for cell decomposition and transfer of the mesh function values are in 
good agreement with the format for representing the topology of adaptive meshes. Thus, the 
software implementation of the approach does not require the initialization of additional 
geometric parameters or cell connectivity relations. The chosen interpolation method 
provides sufficient accuracy of displaying the flow structure and determining its characteristic 
parameters (for example, the distance to the detached shock wave) by the visualization 
software tools. However, to minimize errors to the level of the results of internal algorithms 
for analyzing the solution of a CFD kernel, it is more preferable to use second order methods 
for calculating gradients [13] with the subsequent determination of the values of the variables 
at the mesh nodes. 

3. Computational experiment 
The features of using various approaches to the presentation of data for visualizing the 

calculation results on locally adaptive mixed meshes using the Tecplot are considered using 
the example of a supersonic flow (𝑀 = 2, 𝑅𝑒 = 300) near the sphere surface. The problem 
statement, calculation method, flow structure and parameters are discussed in detail in [13]. 

A doubly connected computational domain is a union of a cylinder and a sphere, inside 
which there is a streamlined body (fig. 7a). At the stage of generating the starting grid, the 
computational domain is divided into several tens of domains with common flat and curved 
faces. The boundary layer zone is filled with tetrahedrons and prisms. At the outer boundaries 
of the computational domain, the mesh consists of tetrahedra and hexahedra. In the rest of 
the space, hexahedral, tetrahedral and prismatic mesh blocks alternate. The quadrangular 
pyramids are used to join the triangular faces of the tetrahedra with the quadrangular faces of 
the hexahedra and prisms. The total dimension of the conformal mesh is 1.3·105 nodes and 
2.7·105 elements. 

 

  

a) computational domain 
b) view of the adaptive mesh in the slice 

𝑌 = 0 
Fig. 7. The geometry of the computational domain and the structure of the adaptive mesh for 

simulating the supersonic flow around a sphere. 
 



 
 

During the simulation, the mesh is adapted twice. The experimentally chosen 
combination of adaptation criteria allows to refine the mesh without reference to geometric 
coordinates. Mesh refinement is performed near the isosurface of the local Mach number 𝑀 =
1 (transition from supersonic to subsonic flow velocity), along the boundaries of the 
recirculation zone, as well as in the regions of maximum pressure gradients and velocity 
modulus. The structure of the final adaptive mesh is shown in fig. 7b. The cells of the first 
refinement level are colored yellow, the cells of the second level are marked in red. The 
refinement zone goes through the boundary layer zone and crosses the boundaries of the 
mesh blocks. As a result of local decomposition, the total number of computational cells 
increases by 2.37 times. The hanging node mesh dimension is 4.5·105 nodes and 6.5·105 
elements. 

Comparative visualization of the flow is performed for four data presentations: 

• visualization of the values specified in adaptive mesh cell centers; 
• transfer of values to the mass centers of the starting grid cells; 

• converting a hanging nodes mesh to a polyhedral mesh; 

• transform adaptive mesh with elements decomposition. 
The choice of these approaches is due to the possibility of using software packages for 

visualization of solutions specified on conformal meshes. 
Visualizing the flow on an adaptive mesh without any transformations is the simplest 

approach to viewing the results. But as noted above, the main problem of the approach is 
associated with the appearance of artificial internal border, which lead to discontinuities of 
isosurfaces. Fig. 8a shows the density distribution in the slice Y = 0. A continuous color 
palette and an additional twenty-one level lines are used. In the general view, the contour 
lines appear to be continuous. When scaling the image (fig. 8b), you may notice minor gaps 
that have little impact on the viewing of the results. However, the three-dimensional 
isosurface 𝜌 = 1.35 constructed on a hanging node mesh (fig. 8c) consists of many 
disconnected parts located at a noticeable distance from each other. In this case, the level 𝜌 =
1.35 does not refer to the characteristic parameters of the flow and is used exclusively as the 
most illustrative example to demonstrate the problems of visualizing the results. The 
incorrect viewing of the isosurface is explained by the fact that it passes through the 
boundaries of the different refinement level zones. Thus, the approach is applicable for 
monitoring intermediate calculation results, but cannot be used at the stage of visualizing the 
final results and detailed analysis of the flow structure. 

 

   

a) slice 𝑌 = 0 
b) flow at the sphere  

surface 
c) isosurface 𝜌 = 1.35 

Fig. 8. Visualization of the density distribution on an hanging node adaptive mesh. 
 
The first way to remove discontinuities is to transfer the solution to the initial conformal 

mesh. In accordance with the finite volume method, the values of the mesh functions in the 
parent cell are calculated as the volume average of the values specified in the child element 
centers 



 
 

𝑓𝑝 =
∑𝑓𝑐ℎ|𝐶𝑐ℎ|

∑|𝐶𝑐ℎ|
.  

The flow pattern created from the values specified on the conformal mesh, as expected, 
does not contain isolines and isosurfaces discontinuities (fig. 9). At the same time, the 
transition to a coarse mesh leads to a worsening in image detail. For example, it can be seen 
that the isolines in the region of the detached shock wave are at an increased distance from 
each other in comparison with the images in fig. 8a and fig. 8b. That is, this approach limits 
the possibility of demonstrating small-scale details of the solution, for the purpose of 
resolving which the mesh refinement methods are used. 

 

   

a) slice 𝑌 = 0 
b) flow at the sphere  

surface 
c) isosurface 𝜌 = 1.35 

Fig. 9. Visualization of the density distribution on the original grid. 
 
The second way to exclude interior border is to transform polyhedra with hanging nodes 

on the edges to polyhedra with flat polygonal faces. Here a triangle with a hanging node on 
one edge becomes a quadrilateral, a quadrilateral with hanging nodes on two edges becomes 
a hexagon, and so on. When a mesh element has four neighbors of the next refinement level 
along a face, then such a face is appropriately divided into parts. The number of mesh cells 
and the cell center coordinates do not change. Therefore, interpolation of the values of the 
mesh functions is not required. Fig. 10 shows an illustration of the transformation of a prism 
to a polyhedron with eleven planar faces. Two of the five faces of the cell are split into four 
parts. The remaining quadrangles become a pentagon and a hexagon. The hanging node 
triangular face transforms into a quadrilateral. 

 

  
a) prism and its neighboring cells b) polyhedral cell 

Fig. 10. Transformation of the prism. 
 
The flow pattern created from the values of the mesh function at the polyhedra centers is 

shown in fig. 11. Level lines and 3D density isosurface are displayed without breaks. The 
detailing of the solution features is equivalent to the picture in fig. 8. And, therefore, this 
visualization method is the most preferable when using software packages that work with 
polyhedral meshes. 

 



 
 

   

a) slice 𝑌 = 0 
b) flow at the sphere  

surface 
c) isosurface 𝜌 = 1.35 

Fig. 11. Visualization of density distribution on a polyhedral mesh. 
 
In the absence of polyhedron rendering support, an adaptive mesh can be converted to a 

mixed conformal mesh of base polyhedra using the algorithm described in the previous 
section of the article. The dimensions of the adaptive mesh and the conformal mesh 
generated on its basis are given in tab. 1. 
Table 1 

 Adaptive mesh Conformal mesh 
Number of nodes 453413 500238 
Number of tetrahedra 228634 658580 
Number of pyramids 9781 146963 
Number of prisms 99839 94197 
Number of hexahedrons 307168 288326 
Total number of cells 645422 1188066 

The use of the decomposition algorithm leads to a noticeable increase in the number of 
elements. In the case under consideration, after splitting 46825 cells (7.25% of the total 
number of elements of the adaptive mesh) with hanging nodes on the edges, their total 
number increases 1.84 times. At the same time, the distribution of mesh elements by type is 
changing. The relative number of hexahedra and prisms decreases, and the proportion of 
tetrahedra and pyramids increases. According to theoretical estimates for unstructured finite-
volume algorithms, the amount of computation within one time step increases by about 1.57 
times. But despite the increase in the number of elements, the visualization file with the grid 
topology and fields of values of five variables takes up 65 MB of disk space, which is 18% less 
than the size of the data file with the topology and results in the centers of the polyhedra. The 
increased size of the polyhedra topology description is explained by the use of a format with 
an explicit enumeration of lists of nodes of faces and an indication of the belonging of faces to 
elements. 

 

   

a) slice 𝑌 = 0 
b) flow at the sphere 

surface 
c) isosurface 𝜌 = 1.35 

Fig. 12. Visualization of the density distribution on the transformed mesh. 
 
The flow pattern on the mesh obtained by the transformation (fig. 12) is extremely close 

to the data visualization on the polyhedral mesh (fig. 11). In a detailed analysis with 
overlapping images, local distortions of the curves appear. Fig. 13 shows the density isolines 



 
 

in the slice of the polyhedral mesh in green, the isolines built on the mesh with four types of 
elements are marked in red. Kinks in the red curves can be seen near the surface of the sphere 
in the boundary layer zone. 

 

  
a) slice 𝑌 = 0 b) flow at the sphere surface 

Fig. 13. Density contours for two mesh structures. 
 
The indicated problem is not the result of incorrect operation of the mesh transformation 

algorithm or a consequence of interpolation errors in the values of mesh functions. Local 
distortions of the flow pattern are more or less present in all the illustrations above. Their 
appearance is due to an error in the internal algorithm of the visualization program, which is 
responsible for transferring values from the centers of the cells to the mesh nodes. 

Fig. 14 shows the isolines of the potential flow pressure at the surface of the sphere. The 
green curves correspond to the exact solution specified at the nodes of the conformal mesh. 
The red curves are plotted according to the exact solution determined at the centers of mass 
of its elements. Contour lines are displayed in blue for the case of determining the pressure 

𝑃𝑖
𝑛𝑜𝑑𝑒 at the nodes by averaging the values of the variable at the centers of the elements to 

which the nodes belong 

𝑃𝑖
𝑛𝑜𝑑𝑒 =

∑𝑃𝑘
𝑐𝑒𝑙𝑙𝑤𝑘

∑𝑤𝑘
, 

𝑤𝑘 = |𝐶𝑘| 𝑁𝑘⁄ . 

 

The weight of the element 𝑤𝑘 is equal to its volume divided by the number of vertices 𝑁𝑘. 
An alternative variant of averaging (yellow lines) is to define the weights as the inverse 
distances between the nodes and the centers of mass of the cells 

𝑤𝑘 =
1

𝑑(𝐱𝐢,𝐱𝐤)
.  

All curves accurately reflect the solution pattern (fig. 14a). But the green isolines 
constructed from the values of the function at the mesh nodes have a smooth shape, and the 
curves obtained in one way or another from the solution at the centers of mass of the cells 
again show distortions (fig. 14b). 

 

  
a) slice 𝑌 = 0 b) flow at the sphere surface 

Fig. 14. Pressure isolines for a potential flow around the surface of a sphere. 
 



 
 

The problem of errors in algorithms for transferring values of variables is present in 
problems of data visualization on any unstructured meshes. The most noticeable image 
defects are manifested on unstructured meshes with elements of irregular geometric shape, 
large differences in the sizes of neighboring polyhedra, numbers of edges, faces, etc. This 
class of discrete models includes both adaptive meshes with hanging nodes and various 
variants for converting them to a conformal form. The maximum visualization accuracy is 
achieved here only by using special high-precision interpolation algorithms, taking into 
account, among other things, the physical formulation of the problem. 

4. Conclusions 
The article discusses the issues of visualization of the results of CFD simulations on 

mixed locally adaptive meshes using unstructured data visualization tools. An algorithm is 
presented for transforming a hierarchical adaptive mesh with four types of cells to a 
conformal form by concerted decomposition into tetrahedrons and pyramids of a subset of 
cells with hanging nodes. On the example of visualization of supersonic flow using the Tecplot 
package, the advantages and disadvantages of various methods of data presentation are 
shown. The main approaches are the representation of the cells of the adaptive mesh in the 
form of polyhedra and the transformation of the topology using the proposed local 
decomposition algorithm. 
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